Nervenzellen kommunizieren miteinander über elektrische Signale. Dafür nehmen sie über weitverästelte Empfangsstrukturen – die Dendriten – Signale anderer Nervenzellen auf und leiten sie entlang eines dünnen Fortsatzes – dem Axon – an andere Nervenzellen weiter. Axon und Dendriten sind gewöhnlich über den Zellkörper des Neurons verbunden. Ein Team aus Wissenschaftlern am Bernstein Zentrum Heidelberg-Mannheim, der Ruprecht-Karls-Universität Heidelberg und der Rheinische Friedrich-Wilhelms-Universität Bonn wies nun jedoch Neurone nach, bei denen das Axon direkt an einem der vielen Dendriten entsteht. Wie bei einer Umgehungsstraße wird dadurch die Signalweiterleitung innerhalb der Nervenzelle erleichtert.
„Signale, die an diesem Dendriten ankommen, müssen nicht erst über den Zellkörper geleitet werden“, erklärt Christian Thome vom Bernstein Zentrum Heidelberg-Mannheim und der Universität Heidelberg, einer der beiden Erstautoren der Studie. Für die Untersuchung färbten die Wissenschaftler zunächst gezielt die Ursprungsorte der Axone von sogenannten Pyramidenzellen im Hippocampus an. Dieser Hirnbereich ist insbesondere an der Gedächtnisspeicherung beteiligt. Der überraschende Befund: „Wir beobachteten, dass bei gut der Hälfte der Zellen das Axon nicht am Zellkörper entsprang, sondern an einem der unteren Dendriten“, so Thome.
Die Forscher untersuchten in Folge die Wirkung von Signalen, die an diesem Dendriten empfangen werden. Dazu injizierten sie eine bestimmte Form des neuronalen Botenstoffes Glutamat ins Hirngewebe von Mäusen, die durch Lichtpulse aktiviert werden kann. Ein hochauflösendes Mikroskop ermöglichte den Neurowissenschaftlern, den Lichtstrahl gezielt auf einen bestimmten Dendriten zu richten. Durch die darauffolgende Aktivierung des Botenstoffes simulierten sie so ein erregendes Eingangssignal.
„Unsere Messungen weisen darauf hin, dass Dendriten, die direkt mit einem Axon verbunden sind, bereits kleine Eingangsreize aktiv weitergeben und das Neuron aktivieren“, berichtet der zweite Erstautor Tony Kelly vom Sonderforschungsbereich (SFB) 1089 an der Universität Bonn. Computersimulationen der Wissenschaftler zeigen, dass dieser Effekt besonders stark ausgeprägt ist, wenn der Informationsfluss von anderen Dendriten zum Axon durch hemmende Eingangssignale am Zellkörper unterbunden wird.
„Auf diese Weise beeinflussen Signale, die den speziellen Dendriten erreichen, das Verhalten der Nervenzelle stärker als alle anderen Eingänge“, erklärt Kelly. Die Forscher wollen als nächsten Schritt herausfinden, welche biologische Funktion durch den besonderen Dendriten eigentlich verstärkt wird – und was damit der Grund für die ungewohnte Gestalt dieser Nervenzellen ist.
Quelle: Nationales Bernstein Netzwerk Computational Neuroscience